Optimal Sampling Points in Reproducing Kernel Hilbert Spaces
نویسندگان
چکیده
The recent developments of basis pursuit and compressed sensing seek to extract information from as few samples as possible. In such applications, since the number of samples is restricted, one should deploy the sampling points wisely. We are motivated to study the optimal distribution of finite sampling points. Formulation under the framework of optimal reconstruction yields a minimization problem. In the discrete case, we estimate the distance between the optimal subspace resulting from a general Karhunen-Loève transform and the kernel space to obtain another algorithm that is computationally favorable. Numerical experiments are then presented to illustrate the performance of the algorithms for the searching of optimal sampling points.
منابع مشابه
Some Properties of Reproducing Kernel Banach and Hilbert Spaces
This paper is devoted to the study of reproducing kernel Hilbert spaces. We focus on multipliers of reproducing kernel Banach and Hilbert spaces. In particular, we try to extend this concept and prove some related theorems. Moreover, we focus on reproducing kernels in vector-valued reproducing kernel Hilbert spaces. In particular, we extend reproducing kernels to relative reproducing kernels an...
متن کاملFisher’s Linear Discriminant Analysis for Weather Data by reproducing kernel Hilbert spaces framework
Recently with science and technology development, data with functional nature are easy to collect. Hence, statistical analysis of such data is of great importance. Similar to multivariate analysis, linear combinations of random variables have a key role in functional analysis. The role of Theory of Reproducing Kernel Hilbert Spaces is very important in this content. In this paper we study a gen...
متن کاملSampling Expansions in Reproducing Kernel Hilbert and Banach Spaces
We investigate the construction of all reproducing kernel Hilbert spaces of functions on a domain Ω ⊂ R that have a countable sampling set Λ ⊂ Ω. We also characterize all the reproducing kernel Hilbert spaces that have a prescribed sampling set. Similar problems are considered for reproducing kernel Banach spaces, but now with respect to Λ as a p-sampling set. Unlike the general p-frames, we pr...
متن کاملSolving multi-order fractional differential equations by reproducing kernel Hilbert space method
In this paper we propose a relatively new semi-analytical technique to approximate the solution of nonlinear multi-order fractional differential equations (FDEs). We present some results concerning to the uniqueness of solution of nonlinear multi-order FDEs and discuss the existence of solution for nonlinear multi-order FDEs in reproducing kernel Hilbert space (RKHS). We further give an error a...
متن کاملSampling Expansions and Interpolation in Unitarily Translation Invariant Reproducing Kernel Hilbert Spaces
Sufficient conditions are established in order that, for a fixed infinite set of sampling points on the full line, a function satisfies a sampling theorem on a suitable closed subspace of a unitarily translation invariant reproducing kernel Hilbert space. A number of examples of such reproducing kernel Hilbert spaces and the corresponding sampling expansions are given. Sampling theorems for fun...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Complexity
دوره 34 شماره
صفحات -
تاریخ انتشار 2016